

SCH40, SCH80, SCH120 UPVC PIPES & SCH40, SCH80 CPVC PIPES

Contents

1	ASTM UPVC PIPES
2	1. Preface
3	2. Physical Properties of SCH40
4	3. Chemical Properties of UPVC Pipes
8	4. ASTM SCH40/SCH80/SCH120 UPVC Pipes Specification
10	5. NAN YA Vinyl Adhesive
11	6. Installation of UPVC Pipes
12	ASTM CPVC PIPES
13	1. Preface
14	2. Characteristies of CPVC Pipes
15	3. CPVC Chemical Properties
16	4. Applications of CPVC Pipes
17	5. Specifications of CPVC Pipes :
17	1. ASTM Specification for SCH40 CPVC Pipes :
18	2. ASTM Specification for SCH80 CPVC Pipes :
19	6. Installation of CPVC Pipes (Unheating connection)
20	7. Instructions for Installation of CPVC Pipes
22	8. NAN YA CPVC Adhesive

ASTM UPVC PIPES

ASTM UPVC PIPES

Preface

Nestablished in 1958 and was at once engaged in the production of UPVC pipes and fittings, CPVC Pipes and fittings. On account of excellent quality, complete specifications and punctual delivery, the products have received good comment and reputation from the plastic circle. Our UPVC pipes and fittings fulfill the set standards specifications by either CNS or ASTM, ISO, JIS; the Pipes and fittings includes ASTM SCH40, SCH80, SCH120 and JIS VP, VU and CNS, also for thickness and thin wall pipes by JIS. At present, we have the largest and newest equipment for producing UPVC pipes and fittings CPVC Pipes and fittings in Taiwan. Our productivity is the strongest and our distributing network covers the whole world. We shall continue to develop new quality products to meet market demand, maintain punctual delivery and offer best services to our customers.

Products	Materials standard	Outlines dimensional spec. & physical properties	Sizes
SCH40, SCH80 UPVC Pipes	Cell classification 12454-B	ASTM D-1785	³ /8" ~24"
SCH120 UPVC Pipes	ASTM D-1784	ASTIVI D-1785	¹ /2" ~12"
SCH40, SCH80 CPVC Pipes	Cell classification 23447 ASTM D-1784	ASTM F-441	³ /8"~16"

2 Physical Properties of SCH40 SCH20 UPVC Pipes

Physical Properties of SCH40 SCH80 SCH120 UPVC Pipes

Pilot projects	Quality standard
Sustained Pressure	Meet ASTM D-1785, as shown in the following table
Burst Pressure	Meet ASTM D-1785, as shown in the following table
Flattening	Conforms to ASTM D-1785, does not break when the inner diameter is
	deformed to 40% of the original under pressure
Extrusion Ouality	Meet ASTM D-1785

Comparison table of various water-resistant pressure values of UPVC rigid pipes SCH40, SCH80, and SCH120 specifications:

		Uliit. rsi(wira)											
		SCH40			SCH80			SCH120					
Size	Sustained	Burst	Water Pres-	Sustained	Burst Pres-	Water Pres-	Sustained	Burst Pres-	Water Pres-				
	Pressure	Pressure	sure Ratings	Pressure	sure	sure Ratings	Pressure	sure	sure Ratings				
3/8"	1310(9.03)	1990(13.72)	620(4.27)	1930(13.31)	2940(20.27)	920(6.34)	-	-	-				
1/2"	1250(8.62)	1910(13.17)	600(4.14)	1780(12.27)	2720(18.76)	850(5.86)	2130(14.69)	3250(22.41)	1010(6.96)				
3/4"	1010(6.96)	1540(10.62)	480(3.31)	1440(9.93)	2200(15.17)	690(4.76)	1620(11.17)	2470(17.03)	770(5.31)				
1"	950(6.55)	1440(9.93)	450(3.10)	1320(9.10)	2020(13.93)	630(4.34)	1510(10.41)	2300(15.86)	720(4.96)				
11/4"	770(5.31)	1180(8.14)	370(2.55)	1090(7.52)	1660(11.45)	520(3.59)	1250(8.62)	1900(13.10)	600(4.14)				
1 ¹ /2"	690(4.76)	1060(7.31)	330(2.28)	990(6.83)	1510(10.41)	470(3.24)	1130(7.79)	1720(11.86)	540(3.72)				
2"	580(4.00)	890(6.14)	280(1.93)	850(5.86)	1290(8.89)	400(2.76)	990(6.83)	1510(10.41)	470(3.24)				
21/2"	640(4.41)	970(6.69)	300(2.07)	890(6.14)	1360(9.38)	420(2.90)	980(6.76)	1490(10.27)	470(3.24)				
3"	590(4.07)	840(5.79)	260(1.79)	790(5.45)	1200(8.27)	370(2.55)	930(6.41)	1420(9.79)	440(3.03)				
4"	470(3.24)	710(4.90)	220(1.52)	680(4.69)	1040(7.17)	320(2.21)	900(6.21)	1380(9.51)	430(2.96)				
5"	410(2.83)	620(4.27)	190(1.31)	610(4.21)	930(6.41)	290(2.00)	830(5.72)	1260(8.69)	400(2.76)				
6"	370(2.55)	560(3.86)	180(1.24)	590(4.07)	890(6.14)	280(1.93)	780(5.38)	1190(8.20)	370(2.55)				
8"	330(2.28)	500(3.45)	160(1.10)	520(3.59)	790(5.45)	250(1.72)	760(5.24)	1160(8.00)	380(2.62)				
10"	300(2.07)	450(3.10)	140(0.97)	490(3.38)	750(5.17)	230(1.59)	770(5.31)	1170(8.07)	370(2.55)				
12"	280(1.93)	420(2.90)	130(0.90)	480(3.31)	730(5.03)	230(1.59)	710(4.90)	1090(7.52)	340(2.34)				
14"	270(1.89)	410(2.87)	130(0.90)	470(3.29)	720(4.97)	220(1.54)	-	-	-				
16"	270(1.89)	410(2.87)	130(0.90)	470(3.29)	710(4.90)	220(1.54)	-	-	-				
18"	270(1.89)	410(2.87)	130(0.91)	460(3.22)	700(4.90)	220(1.54)	-	-	_				
20"	260(1.82)	390(2.73)	120(0.84)	460(3.22)	700(4.90)	220(1.54)	-	_	_				
24"	250(1.75)	380(2.66)	120(0.84)	450(3.15)	680(4.76)	210(1.47)	_	-	_				

Remarks : (1) The above data comes from ASTM D-1785.

(2) Testing temperature is 73°F(23℃).

(3) SCH 80, SCH 120 Water Pressure rating means unthread piping.

Temperature Pressure De-rating For Thermoplastic Materials

Elevated temperature fluid mediums require a de-rating of thermoplastic pipe maximum internal pressure ratings at $73^{\circ}F$. To determine the maximum internal pressure rating at an elevated temperature, simply multiply the product pressure rating at $73^{\circ}F$ by the percentage specified for the desired temperature.

This table is based on the normal temperature of 73°F (23°C), the operating pressure of UPVC pipeline/CPVC pipeline is 100%. As the operating temperature increases, the percentage of operating pressure remaining.

System Operating Temperature °F°C	73 (23)	80 (27)	90 (32)	100 (38)	110 (43)	120 (49)	130 (54)	140 (60)	150 (66)	160 (71)	170 (77)	180 (82)	190 (88)	200 (93)	210 (99)
UPVC	100%	90%	75%	62%	50%	40%	30%	22%	-0-	-0-	-0-	-0-	-0-	-0-	-0-
CPVC	100%	100%	91%	82%	73%	65%	57%	50%	45%	40%	32%	25%	22%	20%	-0-

NOTE: Threaded products should not be used at temperatures above 110°F (43°C) for UPVC, and 150°F (66°C) for CPVC.

Chemical Properties

Followings are terms of chemical resistance:

- \odot : Superb resistance; usable without chemical reaction
- ○: Usable with care.
- imes: Unusable.

CHEMICAL	23°C 60°C	CHEMICAL	23°C 60°C
Acetaldehyde Acetaldehyde, aq 40%	× × 0 ×	Barium salts Beer	$ \begin{array}{c} \odot \\ \odot \\ \odot \end{array} $
Acetamide		Beet sugar liquor	\odot \odot
Acetic acid, vapor	\odot \odot	Benzaldehyde, 10%	Ο×
Acetic acid, glacial	⊙ ×	Benzaldehyde, above 10%	× ×
Acetic acid, 20%	\odot \odot	Benzene(benzol)	× ×
Acetic acid, 80%	\odot \bigcirc	Benzene sulfonic acid, 10%	\odot \odot
Acetic anhydride	× × × ×	Benzene sulfonic acid	× ×
Acetone		Benzoic acid	\odot \odot
Acetylene	0 0	Black liquor-paper Bleach, 12.5% active chlorine	$ \bigcirc \ \odot \\ \odot \ \odot $
Adipic acid Alcool,allyl	\odot \odot \odot	Bleach, 5.5% active chloride	\odot \odot \odot
Alcohol, butyl benzyl	× ×	Borax	\odot \odot
Alcohol, butyl (n-butanol)	\odot \odot	Boric acid	\odot \odot
Alcohol, butyl (2-butanol)	ο×	Boron trifluoride	\odot \odot
Alcohol, ethyl	0 0	Bromic acid	0 0
Alcohol, hexyl	\odot \odot	Bromine ,liquid	× ×
Alcohol, isopropyl (2-propanol)	\odot \odot	Bromine, gas, 25%	\odot \odot
Alcohol, methyl	\odot \odot	Bromine, aq	\odot \odot
Alcohol, propyl (1-propanol)	\odot \odot	Butadine	\odot \odot
Allyl chloride	× ×	Butane	\odot \odot
Alums	\odot \odot	Butantetrol(erythritol)	\odot ×
Ammonia, gas	\odot \odot	Butanediol	\odot \odot
Ammonia, liquid	\times \times	Butyl acetate	\times \times
Ammonia, aq	\odot \odot	Butyl phenol	\odot ×
Ammonium salts, except fluoride	\odot \odot	Butylene	\odot \odot
Ammonium fluoride, 25%	\odot \bigcirc	Butyric acid	\odot ×
Amylacetate	× ×	Calcium Salts aq	\odot \odot
Aniline	× ×	Calcium hypochlorite	\odot \odot
Aniline chlorohydrate	× ×	Calcium hydroxide	\odot \odot
Aniline hydrochloride	××	Cane sugar liquors	\odot \odot
Aniline dyes	× ×	Carbon bisulfide	× ×
Anthraquinone	\odot \odot \odot	Carbon dioxide	\odot \odot \odot \odot
Anthraquinone sulfonic acid	\odot \odot	Carbon dioxide, aq Carbon monoxide	\odot \odot
Antimony trichloride Agua regia	0 0 X	Carbon terachloride	0 0 0 ×
Arsenic acid, 80%	\odot \odot	Casein	\odot \sim \odot
Aryl-sulfonic acid	\odot \odot	Castor oil	\odot \odot

Chemical Properties of UPVC Pipes

CHEMICAL	23℃ 60℃	CHEMICAL	23℃ 60℃
Caustic potash	\odot \odot	Dibutyl phthalate	× ×
(potassium hydroxide)		Dibutyl sebacate	$\circ \times$
Caustic Soda	\odot \odot	Dichlorobenzene	××
(sodium hydroxide)		Dichloroethylene	× ×
Cellosolve	\odot \bigcirc	Ethers	××
Cellosolve acetate	⊙ – ○ ○	Ethyl esters	××
Chloral hydrate	$\odot \odot$	Ethyl esters	××
Chloramine	⊙ <i>−</i>	Ethylene halides	× ×
Chloric acid, 20%	$\odot \odot$ $\bigcirc \times$	Ethylene glycol	⊙ ⊙ × ×
Chlorine, gas ,dry Chlorine, gas ,wet	× ×	Ethylene oxide Fatty acids	$\sim \sim$
Chlorine, liquid	~ ~ × ×	Ferric salts	\odot \odot
Chlorine water	$\odot \odot$	Fluorine, dry gas	0 0 0 ×
Chloracetic acid	\odot \odot	Fluorine, wet gas	0 X
Chlorobenzene	××	Fluoboric acid, 25%	\odot \odot
Chlorbenzyl chloride	× ×	Fluosilicic acid	\odot \odot
Chloroform	× ×	Formaldehyde	\odot \odot
Chlorosulfonic acid	ο×	Formic acid	ο×
Chromic acid, 10%	\odot \odot	F11, F12, F113, F114 Freon-F11, F12, F113, F114	4 0 0
Chromic acid, 30%	\odot \bigcirc	F21, F22 Freon-F21, F22	\times \times
Chromic acid, 40%	\odot \bigcirc	Fruit juices and pulps	\odot \odot
Chromic acid, 50%	\times \times	Fuil oil	$\circ \times$
Citric acid, 20%	\odot \odot	Furfural	\times \times
Coconut oil	\odot \odot	Gas, coal, manufactured	\times \times
Coke oven gas	\odot \odot	Gas, natural, methane	\odot \odot
Copper salts,aq	\odot \odot	Gasolines	00
Corn oil	\odot \odot	Gelatin	\odot \odot
Corn syrup	\odot \odot	Glycerine (Glycerol)	\odot \odot
Cottonseed oil	\odot \odot	Gglycols	\odot \odot
Cresol	× ×	Glue, animal	\odot \odot
Cresylic acid, 50%	\odot \odot	HOCH2COOH Glycolic acid	\odot \odot
Croton aldehyde	× ×	Green liquor, paper	\odot \odot
Crude oil	$\odot \odot$ × ×	Gallic acid	$\odot \odot$ $\odot \odot$
Cyclohexane Cyclohexanol	× × × ×	Heptane Hexane	\odot \odot
Cycohexanone	× ×	Hydrobromic acid, 20%	\odot \odot
Diazo salts	$\odot \odot$	Hydrochloric acid	\odot \odot
Diesel fuels	\odot \odot	Hydrobromic acid, 10%	\odot \bigcirc
Diethyl amine	× ×	Hydrobromic acid, 60%	\odot \bigcirc
Dioctyl phthalate	× ×	Hydrobromic acid, 100%	\odot \bigcirc
Disodium phosphate	\odot \odot	Hydrocyanic acid	\odot \odot
Diglycolic acid	\odot \odot	Hydrogen	\odot \odot
Dioxane-1.4	××	Hydrogen peroxide, 50%	\odot \odot
Dimethylamine	\odot \odot	Hydrogen peroxide, 90%	\odot \odot
Dimethyl formamide	\times \times	Hydrogen sulfide, aq	\odot \odot
Detergents, aq	\odot \odot		

Chemical Properties of UPVC Pipes

CHEMICAL	23℃ 60℃	CHEMICAL	23°C 60°C
Hydrogen sulfide, dry	\odot \odot	Methyl sulfonic acid	\odot \odot
Hydroquinone	\odot \odot	Methylene bromide	××
Hydroxylamine sulfate	\odot \odot	Methylene chloride	× ×
Hydrazine	××	Methylene iodine	× ×
Hypochlorous acid	0 0 0 ×	Milk Mineral oil	\odot \odot \odot
lodine, in KI, 3%,aq lodine, alc	× ×	Mixed acids (sulfuric & nitric)	0 0 ×
lodine, aq, 10%	× ×	Mixed acids (sulfuric & http://www.acids.com/acids.com/acids/	\odot \sim
Jet fuels, JP-4 and JP-5	$\odot \odot$	Malasses	× ×
Kerosene	\odot \odot	Monochlorobenzene	× ×
Ketones	× ×	Monoethanolamine	× ×
Kraft paper liquor	\odot \odot	Motor oil	\odot \odot
Lacquer thinners	$\circ \times$	Nophtha	\odot \odot
Lactic acid, 25%	\odot \odot	Naphthalene	\times \times
Lard oil	\odot \odot	Nickel salts	\odot \odot
Lauric acid	\odot \odot	Nicotine	\odot \odot
Lauryl chloride	\odot \odot	Nicotinic acid	\odot \odot
Lauryl sulfate	\odot \odot	Nitric acid, 0 tp 50%	\odot \bigcirc
Lead salts	\odot \odot	Nitric acid,60%	\odot \bigcirc
Lime sulfur	\odot \odot	Nitric acid,70%	\odot \bigcirc
Linoleic acid	\odot \odot	Nitric acid,80%	0 0
Linseed oil	\odot \odot	Nitric acid,90%	$\circ \times$
Liqueurs	\odot \odot	Nitric acid,100%	× ×
Liqueurs	\odot \odot	Nitric acid , fuming	× ×
Llthium salts	\odot \odot	Nitrobenzene	× ×
Lubricating oils	\odot \odot	Nitroglycerine	× ×
Machine Oil	\odot \odot	Nitrous acid	\odot \bigcirc
Magnesium salts	\odot \odot	Nitrous oxide, gas	\odot \bigcirc
Maleic acid	\odot \odot	Nitroglycol	× ×
Malic acid	\odot \odot	Nitropropane	0 0
Manganese sulfate	\odot \odot	Oils, vegetable	\odot \odot
Mercuric salts	\odot \odot	Oils abd fats	\odot \odot
Mercury	$\odot \odot$	Oleic acid	$\odot \odot$ × ×
Mesityl oxide	××	Oleum Olive eil	
Metallic soaps, aq Methane	· · · · · · · · · · · · · · · · · · ·	Olive oil	0 -
Methyl acetate	× ×	Oxalic acid Oxygen, gas	\odot \odot \odot \odot
Methyl bromide	~ ~ × ×	Ozone, gas	00
Methyl cellosolve	× ×	Palmitic acid, 10%	\odot \odot
Methyl chloride	× ×	Palmitic acid, 70%	0 0 0 ×
Methyl chloroform	× ×	Paraffin	· · · ·
Methyl cyclohexanone	× ×	Pentane	00
Methyl methacrylate	⊙ <i>−</i>	Peracetic acid, 40%	0 0 0 ×
Methyl salicylate	\odot \odot	Peracetic acid, 10%	\odot \bigcirc
Methyl sulfate	\odot \bigcirc	Peracetic acid, 70%	οv
·		·	

Chemical Properties of UPVC Pipes

CHEMICAL	23℃ 60℃	CHEMICAL	23°C 60°C
Perchloroethlene	0 0	Sulfite liquor	\odot \odot
Petroleum, sour	\odot \odot	Sulfur	\odot \odot
Phenol	$\circ \times$	Sugars, aq	\odot \odot
Phenylcarbinol	\times \times	Sulfur dioxide, aq	\odot \odot
Phenylhydrazine	× ×	Sulfur dioxide, wet	\odot \bigcirc
HCI Phenylhydrazine HCI	$\circ \times$	Sulfur dioxide, aq	\odot \odot
Phosgene, liquid, gas	\odot \bigcirc	Sulfur dioxide, wet	\odot \bigcirc
Phosgene, liquid	× ×	Sulfuric acid, up to 70%	\odot \odot
Phosphorus,acid	\odot \odot	Sulfuric acid, 70 to 90%	\odot \bigcirc
Phohosphorus, yellow	\odot \bigcirc	Sulfuric acid, 90 to 100%	0 ×
Phosphorus, red	\odot \odot	Sulfurous acid	O X
Phosphorus pentoxide	\odot \bigcirc	Tall oil	\odot \odot
Phosphorus trichloride	× ×	Tannic acid	\odot \odot
Photographic chemicals ,aq	\odot \odot	Tanning liquors	\odot \odot
Phthalic acid	0 0	Tartaric acid	\odot \odot
Picric acid	× ×	Tetrachloroethane	0 0
Plating solutions, metal	\odot \bigcirc	Tetraethyl lead	\odot \bigcirc
Potassium salts, aq	\odot \odot	Tetrahydrofuran	× ×
Potassium permanganate, 25%	0 0	(SOCI ₂) Thionyl chloride	× ×
Potassium alkyl xanthates	⊙ ×	Thread cutting oils	· -
Propane	\odot \odot	Terpineol	0 0
Propylene dichloride	× ×	Titanium tetrachioride	0 ×
Propylene glycol	\odot \odot	Toluene	× ×
Propylene oxide	× ×	Tributyl phosphate	× ×
Pyridine	× ×	Tributyl citrate	· -
Pyrogallic acid	0 0	Tricresyl phosphate	× ×
Rayon coagulation bath	\odot \odot	Trichloroacetic acid	\odot \odot
Sea water	\odot \odot	Trichloroethylene	× ×
Salicylic acid	$\odot \odot$	Triethanolamine	\odot \bigcirc
Salicylaldehyde Selenic acid	$\bigcirc \bigcirc$	Triethylamine	\odot \odot \odot
Sewage, residential	\odot \odot	Turpentine Urea	\odot \odot \odot
Silicic acid	\odot \odot	Urine	\odot \odot \odot
Silicone oil	0 0 0 ×	Vaseline	× ×
Silver salts	\odot \sim	Vegetable oils	\odot \odot
Soaps	0 0	Vinegar	0 0
Sodium salts, aq, except	\odot \odot	Vinglacetate	× ×
Sodium chlorite	\odot \odot	Water, distilled	\odot \odot
Sodium chlorate	\odot \bigcirc	Water, fresh	\odot \odot
Sodium dichromate, acid	\odot \odot	Water, mine	\odot \odot
Sodium perborate	· · · ·	Water, salt	· · · · ·
Stannic chloride	\odot \odot	Water, tap	\odot \odot
Stannous chloride	\odot \odot	Whiskey	\odot \odot
Starch	\odot \odot	Wines	\odot \odot
Stearic acid	\odot \odot	Xylene	× ×
Stoddard solvent	× ×	Zinc salts	\odot \odot
			0.0

Information about chemical resistance is for reference only

ASTM SCH40/SCH80/SCH120 UPVC Pipes Specification

Unit : Ginch(m/m)

				A	STM D1785					
		S	CH 40		S	CH 80		S	CH 120	
Size	Outer diameter and tolerance Inch (mm)	Thickness and tolerance Inch (mm)	23°C allowable operating pressure psi (kg/cm ²)	Reference weight (kg/M)	Thickness and tolerance Inch (mm)	23°C allowable operating pressure psi (kg/cm ²)	Reference weight (kg/M)	Thickness and tolerance Inch (mm)	23°C allowable operating pressure psi (kg/cm ²)	Reference weight (kg/M)
3/8"	0.675±0.004 (17.14±0.10)	0.091+0.020 (2.31+0.51)	620 (43.66)	0.167	0.126+0.020 (3.20+0.51)	920 (64.79)	0.211	_	_	_
1/2 "	0.840±0.004 (21.34±0.10)	0.109+0.020 (2.77+0.51)	600 (42.25)	0.248	0.147+0.020 (3.73+0.51)	850 (59.86)	0.309	0.170+0.020 (4.32+0.51)	1,010 (71.13)	0.343
3/4"	1.050±0.004 (26.67±0.10)	0.113+0.020 (2.87+0.51)	480 (33.80)	0.329	0.154+0.020 (3.91+0.51)	690 (48.59)	0.419	0.170+0.020 (4.32+0.51)	770 (54.23)	0.452
1"	1.315±0.005 (33.40±0.13)	0.133+0.020 (3.38+0.51)	450 (31.69)	0.483	0.179+0.021 (4.55+0.53)	630 (44.37)	0.615	0.200+0.024 (5.08+0.61)	720 (50.70)	0.674
1 1/4"	1.660±0.005 (42.16±0.13)	0.140+0.020 (3.56+0.51)	370 (26.06)	0.653	0.191+0.023 (4.85+0.58)	520 (36.62)	0.850	0.215+0.026 (5.46+0.66)	600 (42.25)	0.941
1 ¹ /2"	1.900±0.006 (48.26±0.15)	0.145+0.020 (3.68+0.51)	330 (23.24)	0.779	0.200+0.024 (5.08+0.61)	470 (33.10)	1.032	0.225+0.027 (5.72+0.68)	540 (38.03)	1.142
2"	2.375±0.006 (60.32±0.15)	0.154+0.020 (3.91+0.51)	280 (19.72)	1.045	0.218+0.026 (5.54+0.66)	400 (28.17)	1.428	0.250+0.030 (6.35+0.76)	470 (33.10)	1.611
2 1/2"	2.875±0.007 (73.02±0.18)	0.203+0.024 (5.16+0.61)	300 (21.13)	1.650	0.276+0.033 (7.01+0.84)	420 (29.58)	2.177	0.300+0.036 (7.62+0.91)	470 (33.10)	2.343
3"	3.500±0.008 (88.90±0.20)	0.216+0.026 (5.49+0.66)	260 (18.31)	2.160	0.300+0.036 (7.62+0.91)	370 (26.06)	2.916	0.350+0.042 (8.89+1.07)	440 (30.99)	3.346
4"	4.500±0.009 (114.30±0.23)	0.237+0.028 (6.02+0.71)	220 (15.49)	3.074	0.337+0.040 (8.56+1.02)	320 (22.54)	4.264	0.437+0.052 (11.10+1.32)	430 (30.28)	5.387
5"	5.563±0.010 (141.30±0.25)	0.258+0.031 (6.55+0.79)	190 (13.38)	4.169	0.375+0.045 (9.52+1.14)	290 (20.42)	5.915	0.500+0.060 (12.70+1.52)	400 (28.17)	7.687
6"	6.625±0.011 (168.28±0.28)	0.280+0.034 (7.11+0.86)	180 (12.68)	5.414	0.432+0.052 (10.97+1.32)	280 (19.72)	8.139	0.562+0.067 (14.27+1.70)	370 (26.06)	10.345
8"	8.625±0.015 (219.08±0.38)	0.322+0.039 (8.18+0.99)	160 (11.27)	8.154	0.500+0.060 (12.70+1.52)	250 (17.61)	12.364	0.718+0.086 (18.24+2.18)	380 (26.76)	17.249

ASTM SCH40/SCH80/SCH120 UPVC Pipes Specification

	ASTM D1785													
		S	CH 40		S	SCH 80		S	SCH 120					
Size	Outer diameter and tolerance Inch (mm)	Thickness and tolerance Inch (mm)	23°C allowable operating pressure psi (kg/cm ²)	Reference weight (kg/M)	Thickness and tolerance Inch (mm)	23°C allowable operating pressure psi (kg/cm ²)	Reference weight (kg/M)	Thickness and tolerance Inch (mm)	23°C allowable operating pressure psi (kg/cm ²)	Reference weight (kg/M)				
10"	10.750±0.015 (273.5±0.38)	0.365+0.044 (9.27+1.12)	140 (9.86)	11.579	0.593+0.071 (15.06+1.80)	230 (16.20)	18.362	0.843+0.101 (21.41+2.56)	370 (26.06)	25.423				
12"	12.750 ± 0.015 (323.85 ± 0.38)		130 (9.15)	15.280	0.687+0.082 (17.45+2.08)	230 (16.20)	25.223	1.000+0.120 (25.40+3.05)	340 (23.94)	35.715				
14"	14.000 ± 0.015 (355.60 ± 0.38)		130 (9.15)	18.086	0.750+0.090 (19.05+2.29)	220 (15.49)	30.260	—	—	_				
16"	16.000 ± 0.019 (406.40 ± 0.48)		130 (9.15)	23.627	0.843+0.101 (21.41+2.57)	220 (15.49)	38.902	—	_	—				
18"	$\frac{18.000 \pm 0.019}{(457.20 \pm 0.48)}$		130 (9.15)	29.861	0.937+0.112 (23.80+2.84)	220 (15.49)	48.670	—	_	—				
20"	20.000 ± 0.023 (508.00 ± 0.58)		120 (8.45)	35.082	1.031+0.124 (26.19+3.15)	220 (15.49)	59.566	—	_	—				
24"	24.000±0.031 (609.60±0.79)		120 (8.45)	48.826	1.218+0.146 (30.94+3.71)	210 (14.79)	84.506	—	_	_				

Note:

- 1. The material used in the manufacture of the pipe shall be domestically produced rigid polyvinyl chloride (PVC) compound, with a Cell Classification of 12454 (PVC 1120) as defined in ASTM D1784.
- 2. PVC pipes shall be manufactured in accordance to the requirements of ASTM D1785 for physical dimensions and tolerances.
- 3. Application:
 - Pressure corrosion resistant pipes for use at temperatures up to and including 60°C (140°F). Typical applications include: chemical processing, plating, high purity applications, potable water systems, water and wastewater treatment, and other industrial applications.
 - (2) Schedule 120 pressure rating 340 psi (23.94kgf/cm²) to 1,010 psi (71.13kgf/cm²), heavy wall dimensions provide sufficient wall thickness suitable for many drilling, tapping, and other custom machining/fabrication operations.

NAN YA Vinyl Adhesive

N AN YA Vinyl Adhesive was reserved for the uses of rigid UPVC products, as UPVC pipe, PVC fitting etc. It suits the installation of UPVC pipe lines during different temperatures, by the way the product's qualities and physical properties are all apply to standard CNS 6224.

When the UPVC pipe lines were installed by NAN YA Vinyl Adhesive, the UPVC pipe lines will start to transfer water after wait for 24 hours. But if the temperature is under 5°C, the UPVC pipe lines need to keep 48 hours waiting affer installed, then start to transfer water.

* No Eating

Packing Category :

180KG, 15KG, 1KG, 500G

VINYL ADHESIVE for RIGID VINYL PRODUCTS

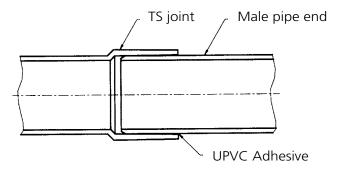
Characteristics :

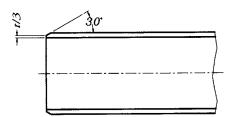
- · Colorless and transparent
- \cdot Excellent adhesion for rigid PVC
- PVC serves as main material. After the applied adhesive is coagulated, it still maintains its characteristics
- May cause adhesive applied surface a swelling state to achieve adhesion effect
- Easy coating
- · Quantity for coating : 0.02g/cm²

Applications :

- · On PVC pipes
- \cdot On PVC vent ducts
- · On PVC pipes and their accessories
- \cdot On PVC plates
- · Rigid or semi-rigid PVC products

MATERIAL AND PHYSICAL TEST CORRESPONDS TO ASTM STANDARD





Installation of UPVC Pipes

TS unheating connection method :

- 1. On outside of pipe use a beveling tool to produce a t/3, 30° chamfer.
- 2. Each UPVC pipes mark line for the depth of the socket onto the pipe with reference.
- 3. Clean, wipe with a clean and dry rag.
- 4. Using applicator aggressively apply a full even layer of UPVC adhesive equal to the depth of the socket onto the pipe. Then aggressively apply a medium layer of UPVC adhesive into the fitting socket. Immediately while UPVC adhesive is still wet or tacky, assemble the piper into the fitting. Do not assemble if UPVC adhesive coatings are hardened.
- 5. Newly assembled joints must not be handled during set time and handled very carefully during cure time.

ASTM CPVC PIPES

ASTM CPVC PIPES

- Featuring excellent acid, alkali and corrosion resistance, high rigidity, minimum fluid resistance and no influence on water quality, the heat-resistant CPVC is a lightweight material for easy handling and installation. It meets a wide range of applications that include household hot water, hot spring water, chemical engineering works, heated fluid supply in semi-conductor Fab. or chamical factories; industrial heated waste water drainage as well as fire fighting works.
- As best-selling products, the CPVC pipes and fittings produced by NAN YA feature a full range of both physical and chemical properties that meet CNS 14664, ASTM F441 for SCH40, SCH80 standards. CPVC material meet cell classification 23447 of ASTM D-1784.
- Currently, we have the largest and finest production equipment for CPVC pipes and fittings in Taiwan. The overall output, which is second to none in the local industry, is sold worldwide. At the same time, the intensive local marketing network is delivering satisfactory service as well.

1. Optimal heat resistance:

This makes the product apt for the supply of heated water or heated chemical fluids, which under $93^{\circ}C$.

2. Good pharmacopoeia and corrosion resistance:

The optimal resistance to acids, alkalis and corrosion makes the product apt for piping works for hot water and heated chemical fluids.

3. Optimal heat insulation:

At minimum heat transmittance: The minimum heat transmittance that is rated at approximately 1/360 that of steel pipes, delivers heat insulation to the fluid inside the pipe.

4. No incrustation:

Thanks to the glossy wall that invites n incrustation, the pipe delivers larger flow when compared with metal pipes of identical diameters.

5. No impacts on water quality:

When used for long period of time, the pipe does not produce impacts on the water quality and it meets all solution requirements.

6. Good electrical insulation:

The god electrical insulation makes the pipe apt for high-voltage and heat-resistant applications.

7. Easy installation:

As other UPVC pipes, this pipe is installable by using a simple method at minimum cost.

Temperature Pressure De-rating For Thermoplastic Materials

Elevated temperature fluid mediums require a de-rating of thermoplastic pipe maximum internal pressure ratings at $73^{\circ}F$. To determine the maximum internal pressure rating at an elevated temperature, simply multiply the product pressure rating at $73^{\circ}F$ by the percentage specified for the desired temperature.

This table is based on the normal temperature of 73°F (23°C), the operating pressure of UPVC pipeline/CPVC pipeline is 100%. As the operating temperature increases, the percentage of operating pressure remaining.

System Operating Temperature °F °C	73 (23)	80 (27)	90 (32)	100 (38)	110 (43)	120 (49)	130 (54)	140 (60)	150 (66)	160 (71)	170 (77)	180 (82)	190 (88)	200 (93)	210 (99)
UPVC	100%	90%	75%	62%	50%	40%	30%	22%	-0-	-0-	-0-	-0-	-0-	-0-	-0-
CPVC	100%	100%	91%	82%	73%	65%	57%	50%	45%	40%	32%	25%	22%	20%	-0-

NOTE: Threaded products should not be used at temperatures above 110°F (43°C) for UPVC, and 150°F (66°C) for CPVC.

CPVC pipes shows an excellent chemical resistance to most acids, alkaline and salts.

But when it is used for organic solvents, it is remarkably swelled and physical properties fall down.

Chemicals	Concentration	20°C/68°F	60°C/140°F	80°C/176°F
Hydrochloric acid	20%	Excellent	Excellent	Good
Hydrochloric acid	35%	Excellent	Excellent	Good
Nitric acid	40%	Excellent	Fair	Fair
Nitric acid	60%	Good	Fair	Not good
Sulfuric acid	30%	Excellent	Good	Good
Sulfuric acid	50%	Excellent	Good	Not Good
Sulphurous acid	100%	Good	Not good	Not good
Acetic acid	60%	Excellent	Fair	Fair
Acetic acid	95%	Good	Not good	Not good
Cartonic acid	100%	Excellent	Fair	Fair
Caustic soda	40%	Excellent	Excellent	Good
Caustic soda	60%	Excellent	Excellent	Good
Sodium chloride	Saturate	Excellent	Excellent	Good
Sodium carbonate	Saturate	Excellent	Excellent	Good
Sodium sulfate	Saturate	Excellent	Excellent	Good
Hydrogen peroxide	Less than 30%	Excellent	Good	Not good
Ammonium carbonate	Saturate	Excellent	Excellent	Good
Methanol	100%	Excellent	Fair	Unavailable
Ethanol	100%	Excellent	Good	Unavailable
Isopropanol	100%	Excellent	Good	Good
Butanol	100%	Excellent	Good	Fair
Glycerine	100%	Excellent	Excellent	Excellent
Acetone	100%	Unavailable	Unavailable	Unavailable
Methyl othyl ketone	100%	Unavailable	Unavailable	Unavailable
Toluene	100%	Unavailable	Unavailable	Unavailable

- 1. Hot water piping for households, restaurants and hotels.
- 2. Hot water piping works for manufacturing plants.
- 3. Delivery pipe for heated chemical fluids and wastewater in chemical plants.
- 4. Hot spring piping
- 5. Fire fighting pipes
- 6. A/C systems, hot water circulation piping system

- 7. High-voltage cable and heat-resistant power pipes
- 8. Piping for transfer heated water or heated chemical fluids in semi-conducter Fab.
- 9. Piping for heated chemical fluids in electroplating plant.
- 10.Buried piping for high voltage power cable.
- 11. Other types of heated fluid delivery pipes.

Hot water piping

Hot Spring piping

Petrochemical plant

Semi-conductor Fab.

Specifications of CPVC Pipes

1. ASTM Specification for SCH40 CPVC Pipes :

				Unit : Incs(mm)
Nominal	Outside Diameter and	SCH 40 Wall Thickness		_ Approx. Weight
Pipe Size	Toerance ⁽¹⁾	Minimum	Tolerance	(Kg/m) ⁽²⁾
3/8"	0.675±0.004	0.091	+0.020	0.179
5,5	(17.1±0.10)	(2.31)	(+0.51)	
1/2"	0.840 ± 0.004	0.109	+0.020	0.265
	(21.3±0.10)	(2.77)	(+0.51)	
3/4"	1.050 ± 0.004	0.113	+0.020	0.351
5, 1	(26.7±0.10)	(2.87)	(+0.51)	
1"	1.315±0.005	0.133	+0.020	0.517
·	(33.4±0.13)	(3.38)	(+0.51)	0.517
1 1/4"	1.660 ± 0.005	0.140	+0.020	0.699
, .	(42.2±0.13)	(3.56)	(+0.51)	0.055
1 1/2"	1.900±0.006	0.145	+0.020	0.833
1	(48.3±0.15)	(3.68)	(+0.51)	0.055
2"	2.375±0.006	0.154	+0.020	1.117
L	(60.3±0.15)	(3.91+)	(+0.51)	1.117
2 1/2"	2.875±0.007	0.203	+0.024	1.763
2 1/2	(73.0±0.18)	(5.16)	(+0.61)	1.705
3"	3.500±0.007	0±0.007 0.216 +0.026 2.5	2.309	
2	(88.9±0.18)	(5.49)	(+0.66)	2.505
4"	4.500±0.008	0.237	+0.028	3.285
-	(114.3±0.20)	(6.02)	(+0.71)	5.205
5"	5.563±0.010	0.258	+0.031	4.456
5	(141.3±0.25)	(6.55)	(+0.79)	4.450
6"	6.625±0.011	0.280	+0.034	5.787
0	(168.3±0.28)	(7.11)	(+0.86)	5.707
8"	8.625±0.015	0.322	+0.039	8.716
	(219.1±0.38)	(8.18)	(+0.99)	
10"	10.750±0.015	0.365	+0.044	12.377
10	(273.1±0.38)	(9.27)	(+1.12)	12.377
12"	12.750±0.015	0.406	+0.049	16.332
	(323.9±0.38)	(10.31)	(+1.24)	
14"	14.000±0.015	0.437	+0.053	19.333
	(355.6±0.38)	(11.10)	(+1.35)	
16"	16.000±0.019	0.500	+0.060	25.256
10	(406.4 ± 0.48)	(12.70)	(+1.52)	25.256

Note :

1. Outer diameter shall refer to the arithmetic mean value of any 2 given O.D. at the right angle to each other.

2. Approximate weight shall be estimated by adding the minimum thickness to 1/2 of the allowable thickness tolerance at the specific gravity of 1.52.

3. Material meet the cell classification 23447 of ASTM D-1784.

4. The outlines dimensional specifications and physical properties meet the ASTM F-441.

Specifications of CPVC Pipes

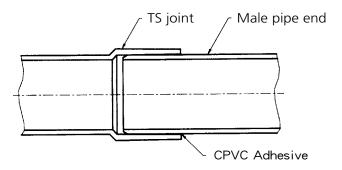
2. ASTM Specification for SCH80 CPVC Pipes :

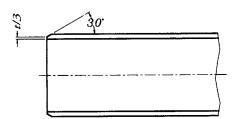
				Unit : Incs(mm)
Nominal Pipe Size	Outside Diameter and Toerance ⁽¹⁾	SCH80 Wall Thickness		Approx. Weight
		Minimum	Tolerance	(Kg/m) ⁽²⁾
3/8"	0.675 ± 0.004	0.126	+0.020	0.226
5/6	(17.1 ± 0.10)	(3.20)	(+0.51)	0.220
1/2"	0.840 ± 0.004	0.147	+0.020	0.330
172	(21.3 ± 0.10)	(3.73)	(+0.51)	0.550
3/4"	1.050 ± 0.004	0.154	+0.020	0.448
5/4	(26.7 ± 0.10)	(3.91)	(+0.51)	0.446
1"	1.315 ± 0.005	0.179	+0.021	
I	(33.4 ± 0.13)	(4.55)	(+0.53)	0.657
1 1/4"	1.660 ± 0.005	0.191	+0.023	0.000
1 1/4	(42.2±0.13)	(4.85)	(+0.58)	0.909
1 1/2"	1.900 ± 0.006	0.200	+0.024	1 102
1 1/2	(48.3±0.15)	(5.08)	(+0.61)	1.103
2"	2.375±0.006	0.218	+0.026	1.526
Z	(60.3±0.15)	(5.54)	(+0.66)	1.526
2.4/2"	2.875±0.007	0.276	+0.033	2.327
2 1/2"	(73.0±0.18)	(7.01)	(+0.84)	
3"	3.500 ± 0.007	0.300	+0.036	2 1 1 7
3	(88.9±0.18)	(7.62)	(+0.91)	3.117
4"	4.500 ± 0.008	0.337	+0.040	4 5 5 0
4	(114.3±0.20)	(8.56)	(+1.02)	4.558
5"	5.563±0.010	0.375	+0.045	c 222
C	(141.3±0.25)	(9.52)	(+1.14)	6.322
6"	6.625±0.011	0.432	+0.052	8 700
0	(168.3±0.28)	(10.97)	(+1.32)	8.700
 o"	8.625±0.015	0.500	+0.060	13.216
8"	(219.1±0.38)	(12.70)	(+1.52)	
10"	10.750 ± 0.015	0.593	+0.071	19.628
	(273.1±0.38)	(15.06)	(+1.80)	
12"	12.750 ± 0.015	0.687	+0.082	26.961
	(323.9±0.38)	(17.45)	(+2.08)	20.901
14"	14.000±0.015	0.750	+0.090	32.345
	(355.6±0.38)	(19.05)	(+2.29)	52.545
16"	16.000±0.019	0.843	+0.101	41.584
16"	(406.4 ± 0.48)	(21.41)	(+2.57)	41.304

Note :

1. Outer diameter shall refer to the arithmetic mean value of any 2 given O.D. at the right angle to each other.

2. Approximate weight shall be estimated by adding the minimum thickness to 1/2 of the allowable thickness tolerance at the specific gravity of 1.52.


3. Material meet the cell classification 23447 of ASTM D-1784.


4. The outlines dimensional specifications and physical properties meet the ASTM F-441.

6 Installation of CPVC pipes (Unheating connection)

TS unheating connection method :

- 1. On outside of pipe use a beveling tool to produce a t/3, 30° chamfer.
- 2. Each CPVC pipes mark line for the depth of the socket onto the pipe with reference.
- 3. Clean, wipe with a clean and dry rag.
- 4. Using applicator aggressively apply a full even layer of CPVC adhesive equal to the depth of the socket onto the pipe. Then aggressively apply a medium layer of CPVC adhesive into the fitting socket. Immediately while CPVC adhesive is still wet or tacky, assemble the piper into the fitting. Do not assemble if CPVC adhesive coatings are hardened.
- 5. Newly assembled joints must not be handled during set time and handled very carefully during cure time.

- Range of heat resistance of CPVC pipe: the CPVC pipe is usually used for heated fluids of up to 200°F (93°C). The relationship between temperature and the applicable pressure is given in page 34.
- Embedding in RC: Embedding of CPVC pipes in RC shall be avoided. When necessary, be sure to leave a proper expansion margin. Before grouting RC, a 1-hour static hydraulic test of 10 kgf/ cm² shall be conducted and the test shall show no fracture of leakage.
- Selection of adhesives: Adhesion of the CPVC pipe shall be carried out with a heat-resistant type for CPVC and no ordinary vinyl adhesive shall be used.
- 4. Prevention of site heating: No CPVC or UPVC fittings shall be heated or welded

with a rod in the work site.

- 5. Prevention of freezing: Just like an ordinary UPVC pipe, all adapters used in cold areas shall be provided with freezing measures and the insulation material shall be heat-resistant.
- 6. Prevention of ultraviolet rays: Direct sunshine on the surface of the pipe would make the pipe decolor. The protruding adapter shall be coated with insulation materials.
- Decoloring CPVC: When used in environment of 80~90°C for long periods of time, the surface of the pipe may turn whitish, though the quality remains the same.
- 8. Support of CPVC pipes: CPVC pipes shall be properly supported at the following pitch:

Unit:m

Nominal diameter	Longitudinal pitch	Horizontal pitch
	1.0	0.6
40m/m(11/2")~65m/m(21/2")	1.5	1.0
80m/m(3")~150m/m(6")	2.0	1.5
200m/m(8")以上/and up	2.5	2.0

- Handling and unloading of CPVC pipe: When handling or installing CPVC pipes, keep them from falling. When unloading them, do not drop them.
- 10. Expansion of CPVC pipes:
- (1)As solution to the issue of expansion of CPVC pipes, use tubular adapters or adapters having a heat-resistance rubber ring.
- (2)One expansion adapter shall be provided to the CPVC pipe in both horizontal and vertical direction at every 9 meters. If no expansion adapter is used, a flat bend of 90° shall be provided at every than 7 meters. The purpose of this adapter is to reduce the stretch of the linear piping and the bend would absorb the internal stress created by the expansion. For transverse piping works, the issue of expansion shall be dealt in the following manner.

Water temperature difference °C	Expansion/Straight-line distance of HT-CPVC pipe
20 ° C	1.4cm/10M
40 °C	2.8cm/10M

- 11.The tops of CPVC pipe line, which has to instal automatic discharge valve.
- 12.CPVC adhesive can not touch with water.

Long straight lines	
Straight lines of 4~7 meters	
Straight lines of 2~4 meters	

Nan Ya CPVC Adhesive has excellence heat-resistance, and perform strongly strengh in connected CPVC pipe and CPVC fitting. Also easy and fast for installation.

- No Eating.
- Packing Category : 1KG \ 100g

NAN YA PLASTICS CORPORATION

PLASTICS 3rd DIV.

No.201 Dunhua N. Rd., Songshan Dist., Taipei City 105076, Taiwan(R.O.C.) TEL : (02)2717-8230 FAX : (02)25140628

Test data, sizes, and pictures in the catalog are for reference only, and actual product information is based on the formal reports.

NAN YA Plastics Corp.

NAN YA Plastics Pipe